フォーラム - neorail.jp R16
発行:2020/1/11
更新:2020/10/26

[3883]

【A9R:データで遊ぶA列車】

【A9・Exp.】ニューゲームを自動分類するには(実行編)


「R with Excel」
「R with Excel」(続き)
「R with Excel」(続き)

(約15000字)

 「A列車で行こう9 マップ ダウンロード」などの検索でお越しのかた! 「ダウンロード」はないですけど、「地形の自動生成」でこんなのがつくれますよ。…なにそれなにそれ!! ▼「地形の自動生成」の詳しい使いかたについては[3770]を参照してください。


 「仕込編」([3882])からの続きです。


 多少の見直しをしながら、地形データ(いわゆるハイトマップ)をクラスタリングするための9つの変量が見えてきました。

・V1:「「平地」の輪郭のピクセル数」/「「平地」のピクセル数」
・V2:「「-10m」以下のピクセル数」/65536
・V3:「「山」のピクセルの「高さ」の「中央値」より大きい値の「平均値」/230
・V4:「山の体積」/(256×256×230)
・V5:「全周(1020ピクセル)における「平地」のピクセル数」/1020
・V6:「全周(1020ピクセル)における「水面」のピクセル数」/1020
・V7:「「全「水面」の重心」の「マップの中心」からの距離」/(128×√2)
・V8:「「全「山」の重心」の「マップの中心」からの距離」/(128×√2)
・V9:「「全「水面」の重心」と「全「山」の重心」の距離」/(256×√2)

 ニューゲーム(シナリオマップ)がどうのこうのという前に、「地形の自動生成」で得た地形の特徴をあまさず表現できているか確かめておこうではありませんか。

・(再掲)「ぎおんのじょん」1号から9号まで
 https://neorail.jp/forum/uploads/map_region1-9.png?ref=3883

https://neorail.jp/forum/uploads/map_region1-9.png?ref=3883

 https://upload.wikimedia.org/wikipedia/commons/2/27/Shin-Kobe01s5s3200.jpg
 https://www.jr-odekake.net/eki/img/photo/size_l/0610156_l.jpg
 https://cdn.jalan.jp/jalan/img/2/kuchikomi/3802/KL/97615_0003802893_1.JPG

※画像はイメージです。

[3875]
 > 左上から横に1,2,3、縦に1,4,7「…の順で、」です。各駅停車電車は当駅には停車いたしません。いちばん右下は何番ですか。…はひ!?

 いちばんしたは、ひだりから7,8,9…です。新神戸には停まりますか。な・・・なんだってー!!

 > 「region7」は『これはこれ。(…ゴクリ)』的な地形なのでとりあえず赤いボタンをクリック!

 > チャレンジのつもりで水面の多い地形をだなぁ(略)「region8」は水面が湾なのか川なのかというニュアンスがはっきりしないし水面が多い割にあまりチャレンジングな感じがしないからなんか気に入らないけれど「region9」は気に入った

 このひとたちにごとーじょーねがおうではないかッ!! …『このひとたち』!!(違)

 https://youtu.be/LqtRwjcVjnI?t=72



 https://ja.wikipedia.org/wiki/%E6%96%B0%E7%A5%9E%E6%88%B8

 > 新神戸駅北側の森林地区は布引と呼ばれ、当地域には含まない。

 わかりました。(キリッ

・今回のTSVデータはこちらになります
 https://neorail.jp/forum/uploads/region1_xyz.tsv
 https://neorail.jp/forum/uploads/region1_256x256.tsv
 https://neorail.jp/forum/uploads/region2_xyz.tsv
 https://neorail.jp/forum/uploads/region2_256x256.tsv
 https://neorail.jp/forum/uploads/region3_xyz.tsv
 https://neorail.jp/forum/uploads/region3_256x256.tsv
 https://neorail.jp/forum/uploads/region4_xyz.tsv
 https://neorail.jp/forum/uploads/region4_256x256.tsv
 https://neorail.jp/forum/uploads/region5_xyz.tsv
 https://neorail.jp/forum/uploads/region5_256x256.tsv
 https://neorail.jp/forum/uploads/region6_xyz.tsv
 https://neorail.jp/forum/uploads/region6_256x256.tsv
 https://neorail.jp/forum/uploads/region7_xyz.tsv
 https://neorail.jp/forum/uploads/region7_256x256.tsv
 https://neorail.jp/forum/uploads/region8_xyz.tsv
 https://neorail.jp/forum/uploads/region8_256x256.tsv
 https://neorail.jp/forum/uploads/region9_xyz.tsv
 https://neorail.jp/forum/uploads/region9_256x256.tsv

 …どーん!(ばばばばば

 もちろん、そういうファイルを同じディレクトリに入れておいてRからファイルを読み込んでほいさっさ(略)するのがスジではございますが、なにぶんWindowsでして(げふ)この子がね(違)WindowsでRを使う限りは「R with Excel」を貫徹して、すなわちファイルの読み込みや過度な自動化をしようとしないで、1つ1つ間違いのないようによく確かめながら実行すべきだと思うの(げふ)ありがとうございました。

 ワークスペース(作業スペース)も保存しないで終了して、寝ぐせばっちり(略)毎回「まっさら!」なRがむっくりと起きてきてくれるといいわ!(※表現は演出です。)どうしてもというときはRを複数起動していいのよ? それがWindows®もとい「GUI(笑)」で「対話的」ということなのよ。もちろんそれは知ってた。アリガトウ。(※見解です。)

[3882]
 > 「なんでコピペ決定なの?」と不満げに問い返します。どんなコピペが好き?(以下略)

 > これでrbindするなりクリップボードにコピーして『エクセル野帳!』に貼り付けるなりなんでもござれ。

 その結果がこれだ!(すたぱーん

V1V2V3V4V5V6V7V8V9
region10.2442319010.2625122070.2640614380.0325483240.2833333330.2754901960.2137769840.1727502350.190059366
region20.1469578990.2782745360.4387978010.0693956460.1931372550.3284313730.1331516710.1599924450.146029949
region30.1586580860.3790588380.3163364450.0307431430.2480392160.5294117650.0676318110.0794677710.061336855
region40.093738680.2599639890.4277106730.0521439260.2029411760.2715686270.4690201380.3551185490.412063417
region50.2952698940.1794128420.4594862250.1603041940.1892156860.2705882350.2822646360.0979266110.184602188
region60.1552914360.2808227540.3356671690.0512774920.2549019610.1970588240.0536825210.0681819050.054025214
region70.1205821770.2686920170.3184022910.0315505320.5078431370.2166666670.395877070.3027139960.336555978
region80.0543677990.3882904050.5733832730.0315372630.5568627450.3598039220.1674146990.4692050060.311952482
region90.0689744180.4138488770.4299516910.0147870930.4970588240.4294117650.1826196940.2381459070.198423588


 ぼふっ。かろうじて「横長ではない」行列になっているから、たいていの多変量解析に載せられると思うわ&アリガトウ。

■「R with Excel」

ヘッダーつきで読み込むmyindex9=read.table("clipboard",h=1)
散布図行列を描くplot(myindex9)


 上の「ぼふっ。」という、列名と行名も含んで10×10のやつ全体をコピー!

 https://neorail.jp/forum/uploads/r_index9_plot.png

https://neorail.jp/forum/uploads/r_index9_plot.png


 がふっ。…なんかすかすかである。やだなぁ、これから培養するんですよぅ! …『培養』!!(違)散布図行列をパッと見て目が留まるのは、まんなかにあるV4あたり。そしてV7とV9、V8とV9は、そういう変量なので直線状に点が並びます。これを多重共線性というんでしたっけせんせー。…どこのせんせーですかっ!?(※表現は演出です。)V7とV8のプロットでは、▼ともに小さい(0付近)、▼V7だけ大きい、▼V8だけ大きい、という感じにイチョウの葉のように広がっていきます。

 https://www.yomeishu.co.jp/genkigenki/crudem/171027/index.html

 > 「鴨脚」「鴨脚子」は、葉の形が鴨の掌に似ていることに由来し、
 > ダーウィンは、イチョウを「生きた化石」と呼んでいました。地球上で植物が繁茂したのがジュラ紀(約1億5千万年前)で、そのころの植物でイチョウだけが現存し、ほかの植物はすべて化石となっているからです。

 へー…

V1V2V3V4V5V6V7V8V9
region10.2442319010.2625122070.2640614380.0325483240.2833333330.2754901960.2137769840.1727502350.190059366
region20.1469578990.2782745360.4387978010.0693956460.1931372550.3284313730.1331516710.1599924450.146029949
region30.1586580860.3790588380.3163364450.0307431430.2480392160.5294117650.0676318110.0794677710.061336855
region40.093738680.2599639890.4277106730.0521439260.2029411760.2715686270.4690201380.3551185490.412063417
region50.2952698940.1794128420.4594862250.1603041940.1892156860.2705882350.2822646360.0979266110.184602188
region60.1552914360.2808227540.3356671690.0512774920.2549019610.1970588240.0536825210.0681819050.054025214
region70.1205821770.2686920170.3184022910.0315505320.5078431370.2166666670.395877070.3027139960.336555978
region80.0543677990.3882904050.5733832730.0315372630.5568627450.3598039220.1674146990.4692050060.311952482
region90.0689744180.4138488770.4299516910.0147870930.4970588240.4294117650.1826196940.2381459070.198423588
『平均値で!』0.1486746990.3012084960.3959774450.0526986240.3259259260.3198257080.2183821360.2159447140.210561004


 ちょっと他と違う値が出ていて特徴かなぁと思うところを太字に!(棒読み)「region5」こと「ぎおんのじょん5号」の他とは違うということが数字で表現できました。それに対して「region1」こと「ぎおんのじょん1号」の『平均値で!』って言ったみたいなソレよ。(※詠嘆)V1だけ平均値を超えちゃいますが、V2からV9までは狙いすましたように平均ちょい低めをキープ。…なにそれあざとい。『平均値で!』を狙いすぎるとかえって目立つとか役に立たないとか(げふ)あくまでゲームです。(棒読み)

・(再掲)湾いろいろ。
 https://neorail.jp/forum/uploads/map_bay1-3.png?ref=3883

https://neorail.jp/forum/uploads/map_bay1-3.png?ref=3883


・(再掲)いかにも『新作ニューゲーム!』(※意訳)にありそうな地形ございます。
 https://neorail.jp/forum/uploads/map_new1-2.png?ref=3883

https://neorail.jp/forum/uploads/map_new1-2.png?ref=3883


・(再掲)粘ればこのくらいのが出てきますから粘ってください!(ばーん
 https://neorail.jp/forum/uploads/map_river1-2.png?ref=3883

https://neorail.jp/forum/uploads/map_river1-2.png?ref=3883


・(再掲)3連単どーん!(※演出は表現です)
 https://neorail.jp/forum/uploads/map_gen_metropolitan8_a1-3.png?ref=3883

https://neorail.jp/forum/uploads/map_gen_metropolitan8_a1-3.png?ref=3883


・(再掲)こんな感じだと思いますよ。みんなやってるんじゃないですか。(※音声を変えています)
 https://neorail.jp/forum/uploads/map_tem3gak_a1.png?ref=3883

https://neorail.jp/forum/uploads/map_tem3gak_a1.png?ref=3883


 お次はこのひとたちだーっ。…『だーっ』!!(…たぶんそこじゃない。)

・追加のTSVデータはこちらになりますね?(※ひきつった笑顔で!)
 https://neorail.jp/forum/uploads/bay1_xyz.tsv
 https://neorail.jp/forum/uploads/bay1_256x256.tsv
 https://neorail.jp/forum/uploads/bay2_xyz.tsv
 https://neorail.jp/forum/uploads/bay2_256x256.tsv
 https://neorail.jp/forum/uploads/bay3_xyz.tsv
 https://neorail.jp/forum/uploads/bay3_256x256.tsv
 https://neorail.jp/forum/uploads/new1_xyz.tsv
 https://neorail.jp/forum/uploads/new1_256x256.tsv
 https://neorail.jp/forum/uploads/new2_xyz.tsv
 https://neorail.jp/forum/uploads/new2_256x256.tsv
 https://neorail.jp/forum/uploads/river1_xyz.tsv
 https://neorail.jp/forum/uploads/river1_256x256.tsv
 https://neorail.jp/forum/uploads/river2_xyz.tsv
 https://neorail.jp/forum/uploads/river2_256x256.tsv
 https://neorail.jp/forum/uploads/metropolitan8_a1_xyz.tsv
 https://neorail.jp/forum/uploads/metropolitan8_a1_256x256.tsv
 https://neorail.jp/forum/uploads/metropolitan8_a2_xyz.tsv
 https://neorail.jp/forum/uploads/metropolitan8_a2_256x256.tsv
 https://neorail.jp/forum/uploads/metropolitan8_a3_xyz.tsv
 https://neorail.jp/forum/uploads/metropolitan8_a3_256x256.tsv
 https://neorail.jp/forum/uploads/tem3gak_a1_xyz.tsv
 https://neorail.jp/forum/uploads/tem3gak_a1_256x256.tsv

 だば〜。(※謎の擬音を発しながら座りなおします。)

V1V2V3V4V5V6V7V8V9
bay10.0450616260.186492920.3072850410.0150365410.80.1058823530.3304374110.5947009830.388575539
bay20.2154952660.2642059330.2909154710.040933360.2950980390.2117647060.2954217960.4097929790.334899293
bay30.0753547320.3129272460.4792546580.0384727150.463725490.4294117650.3375646040.3490026350.320188803
new10.1390332990.2608184810.3160352040.0303563660.2882352940.386274510.2233886740.3706433090.283142393
new20.1118638510.1850585940.4844464370.0768107540.3901960780.2666666670.3417088760.1136023560.224093199
river10.0686374380.1655578610.2832410450.0147983720.6911764710.2009803920.1292595590.3316359110.206502238
river20.0985159240.1799163820.2700361230.0255916430.5009803920.1960784310.2513718470.1958242270.223384949
metropolitan8_a10.1238973630.0605163570.4925665140.0756563930.3950980390.2107843140.3632007890.3532602730.240564179
metropolitan8_a20.173957170.1415863040.4821616630.0743381670.363725490.1441176470.3499519170.4567662170.397900171
metropolitan8_a30.1176518440.1731567380.5241445280.0811807380.2549019610.2284313730.5098758040.2698117450.379638206
tem3gak_a10.3016496250.0900878910.1643436870.037290490.3666666670.127450980.0596114250.087027040.072417552
『平均値で!』0.1337380130.1836658820.3722209430.0464059580.4372549020.227985740.2901629730.3210970610.279209684


 ぱらりら。ファミレスのあかりをにらみつけながらコンビニの駐車場でおでん。なぜか鍋持参。(違)

 https://www.asahi.com/articles/ASMDC53GZMDCIIPE00R.html
 https://www.asahicom.jp/articles/images/AS20191211002944_comm.jpg

 > 客が持参した鍋にカレーを入れて渡すスタッフ。「持ち帰り容器は、お金もかかるしゴミになる。それに、鍋で買うと、明日も食べられる」とお客さん=2019年11月12日、北海道帯広市

 https://www3.nhk.or.jp/news/html/20200114/k10012244561000.html

 > おでん専用の鍋にあらかじめ売れる数を予想して具材を仕込んでいましたが、数時間たつと売れ残りとして廃棄に回されていました。

 > 注文を受けてから温めるパック詰めの具材を導入することで、売れ残りや廃棄を減らすことができるほか、仕込みなどの作業も減るため、従業員の負担軽減にもつながるということです。

 保健所の許可を得ておくことが「主」(の目的)で、実際に何かを(保健所の許可が必要な態様で)売ることは「従」ではないのですか。おにぎりや惣菜パンを店で製造して売るデイリーヤマザキ「デイリーホット店」にはかないません。(棒読み)

 http://www.daily-yamazaki.jp/jn/merit.html

 > 焼きたてパンや作りたてのお弁当は、すべて店内で調理。手作りだから、新鮮でおいしい。しかも安全・安心。

 (半分できてるのを冷凍で運んでくるんでしょ=)カーボンフットプリントはバクハツするけれど保存料も使わず廃棄も最低限にできる。カーボンフットプリントが(げふ)しつれいしました。ビルの2階でパンの生地をこねるところからぜんぶやってパンを焼いて売るマロンドにはかないません。材料の備蓄があって、道路など寸断されてもパンが焼けて近くの避難所に届けることができる…はず。メニューを減らせばものすごい数のパンをすごい勢いで焼ける…はず。そういう観点ではパン屋にはNTPのstratumみたいな階層構造がある。たぶんですけどね。

 > 2000年、店内調理のデイリーホットを開始。
 > 多くのお客様のご支持をいただき、現在では店内調理機能店は800店舗を超え、多くのFCオーナー様にご好評いただいています。
 > 「食のコンビニ」デイリーヤマザキにしかない大きな強みで、皆さんの店舗経営を強く支援します。

 > 焼きたてパンは2週間に1度、5〜10種類の新製品を投入。季節商品など「食べておいしく」「より利益率の高い」商品を開発し、店舗を支援します。

 それをぜんぶじぶんでするパン屋なんてゾッとするけれどパン屋したい!(子どものとき書いた「夢」なの!)…に応えるデイリーヤマザキでしたー。

 > その強みが最大限に発揮できることを何よりも大切に考え、エリアや周辺環境、将来性まで見通した上で本当に納得がいく物件だけを開発しています。

 無理なことはしてませんという説明でしたー。

・「bay」らしさ:V2とV6が『平均値で!』より高め
・「new1」と「new2」の違い:▼V2とV6が高めの「new1」と、▼V8だけ特に低め(※山の重心がマップの中心に近くて、山が主題のマップらしいということ=わるいという意味ではない)の「new2」
・「river」らしさ:V5が『平均値で!』より高め(⇔水面が多いが、外とつながる湾ではないし、閉じた湖でもない、の意)
・:⇔V5が大きいと初心者ちっく(※個人の感想です)
・『3連単』の3者3様よ:▼V2が特に低め、▼V1あげてV6あげないで、▼V7大盛りで!(げふ)
・なさけない音で「てむさんがく」と呼びつけたテンプレート「山岳地帯」を代替してやる(その椅子に座るのはおれさまだ!)と鼻息も荒い「tem3gak_a1」:そのココロはV7、V8、V9というかたちでしかと受け取ったぞよ!!(棒読み)

 うーん。

 https://neorail.jp/forum/uploads/r_index9_plot20.png

https://neorail.jp/forum/uploads/r_index9_plot20.png


 …うーん! おでん専用の鍋にあらかじめ売れる数を予想して具材を仕込んで…じゃなくて、培養を始めてから何分後ですか(それも違)V4(「山の体積」)が突出していたらそれだけで別府ですね(ほかの変量は見なくていいですね)みたいな決定木みたいなのが見えてくるようだとはまさにこのことだよ。具材のようすを見れば仕込んでからの時間がわかるといいました。…いいません!!(※予想です。)

V1V2V3V4V5V6V7V8V9
『平均値で!』0.1404595210.2365600590.3829113690.0492376580.3871568630.2693137250.2578615960.2737785050.248317778
『分散で!』0.0055281170.0089503820.0118395890.0011524160.0280161380.0122774740.0175614410.0224908550.012573167


 うーん。分散が最大となっている変量はV5(「全周における平地の比率」)ですが、…それは当然だからV5は除くとV8(「山の重心とマップの中心の距離」)で、分散が最小なのはV4ということでございます。

・「山の体積」(V4):突出して多くして別府するとき以外は、ま、ふつーにゲームがプレーできるように一定以下のところに収まっているので分散は小さい(別府は外れ値!)

 https://previews.123rf.com/images/sepavo/sepavo1604/sepavo160400002/57129791-%E6%B8%A9%E6%B3%89%E3%81%A8%E5%88%A5%E5%BA%9C%E5%B8%82%E9%83%BD%E5%B8%82%E6%99%AF%E8%A6%B3%E5%AE%B6%E8%92%B8%E6%B0%97%E3%81%8C%E4%B8%8A%E6%98%87%E3%80%82.jpg

 別府(げふ)がサ変・THE『別府〔スル〕』になっちゃいました&だまされたとおもって(違)しつれいしました。(※巻き舌)なお、ここで別府(げふ)別府と言っているのは「湾」のほうではなく『地獄!』のほうです。マップ内に「湾」は描かず、全域を使って思う存分・ザ・サ変『地獄〔スル〕』みたいなマップをイメージしてください。…ぞっ、ぞんぶんざさへーん! これはゾッとしない。(違)

■「R with Excel」(続き)

相関行列をつくるround(cor(myindex9),3)
# 正しくできたことを確かめます
RからExcelに
相関行列の表をコピーする
write.table(round(cor(myindex9),3), file="clipboard", sep="\t")


V1V2V3V4V5V6V7V8V9
V11
V2-0.3121
V3-0.3670.1491
V40.485-0.3690.4851
V5-0.603-0.054-0.127-0.5661
V6-0.1910.7690.277-0.113-0.2631
V7-0.246-0.2850.4560.302-0.006-0.2351
V8-0.522-0.0270.226-0.310.554-0.2160.4541
V9-0.425-0.0890.392-0.0180.267-0.2280.8360.8241
『相関係数の分散で!』0.02000.05890.01850.03580.05800.04050.05820.06170.0941


 うーん。ほかの変量との相関係数がいちばんぼやっとしているのはV3ですが、それはまあ当然(げふ)その次にぼやっとしているのはV1ということですから、V1(≒「地形の複雑度」)を基本の変量だと思ってよいのではありませんか。思いたいですよね。(違)

■「R with Excel」(続き)

ライブラリを読み込みますlibrary(rpart)
library(rpart.plot)
rpartを実行するmyrpart901 <- rpart(V1~., myindex9, minsplit = 3)
# データフレーム「myindex9」のうち、
# V1を目的変数(従属変数)、
# それ以外を説明変数とする回帰です
# 変数名を定義していない(ヘッダーがない)場合です
rpartの実行結果を
rpart.plotでプロットする
rpart.plot(myrpart901, type = 2, uniform = TRUE, extra = 1, under = 1, faclen = 0)
# プロットされた図を右クリックしてコピーや保存をします
RからExcelに
rpartによる分割結果の表をコピーする
write.table(myrpart901$where, file="clipboard", sep="\t")
rpartによる分割結果で色分けした
多変量相関図(散布図行列)を描く
library(mclust)
clPairs(myindex9, cl=myrpart901$where)


 …予想と違った。(※恐縮です。)

 https://neorail.jp/forum/uploads/r_index9_rpart_plot.png

https://neorail.jp/forum/uploads/r_index9_rpart_plot.png

 https://neorail.jp/forum/uploads/r_index9_rpart.png

https://neorail.jp/forum/uploads/r_index9_rpart.png

 https://neorail.jp/forum/uploads/r_map_index9_rpart.png

https://neorail.jp/forum/uploads/r_map_index9_rpart.png


n=5n=1n=1n=5n=2n=3n=1n=2
region8
region9
bay1
bay3
river1
river2region7region4
new1
new2
metropolitan8_a1
metropolitan8_a3
bay2
metropolitan8_a2
region2
region3
region6
region1region5
tem3gak_a1


[3575]
 > 「rpart」はあくまで「recursive partitioning and regression trees」なんです。好き勝手に「決定木」などと決めつけて『呼びくだし!』たりしないことです。

 > CART(Classification and Regression Trees):分類と回帰の木。

 > > 交差検証法を使用するCARTは小さなデータセットでも、2進木分析を行うことができるのです。
 > > CARTは全 (学習用) データを使って最大樹木を成長させます。次に、このツリーを剪定します。
 > > CARTとステップワイズ・ロジスティック回帰分析あるいは判別分析を比べたとき、学習用サンプルに関してはCARTは遙かによい結論を導き出してくれます。
 > > CARTは十分に強力です。CARTはたった1日、2日で、専門家が何日もかかって構築したモデルの若干予測精度の劣る程度のモデルを、自動的に作り上げてくれるのですから。
 > > CARTは、すべての変数に関して可能な分岐をすべてチェックします。たとえば19の変数をもった215サンプルのデータセットで考えてみましょう。CARTは、最大で19変数×215サンプル=4085回の分岐を試みます。

 「CART」は「®」なので、オープンソースコミュニティに属する「R」な界隈としては「rpart」とのみ呼びませう。しかし頭の中では「CART」と読んでいるかもしれない。わるぎはなかった。(※音声を変えています。)

 > rpart(recursive partitioning and regression trees):再帰的な分割と回帰の木。以下、そのまま「rpart」と呼んでいきます。

 V1からV9までの9つの変量をそのまま(生で)使って「rpart」([3575])したところ、そのような分割結果になりました。

・V9すなわち『風光明媚度の逆数!』が0.19以上「じゃない!!」:つまり0.19という閾値より小さければたぶん風光明媚ですね、それが最初の分かれ目ですね、ということにされました(…わるくないね)

 …出ました『わるくないね』みたいに言うロンドンっ子!!(違)

・V8を使って分けているところでは、▼山が主題っぽい(中心にある、またはいろいろな位置にいくつもある)か、▼ある方角にべたっと遠景のようにはりついている山しかないか、を0.39という閾値で切っているのですが、「metropolitan8_a1」のようなマップはなんともいえない
・同じパーティションに入れられた「region3」とそれ以外:見た目では『スケールが違う!』と思う(「region3」だけは非常に広いと感じる⇔ほかの2つは広いと思えば広いし狭いと思えば狭くも見える)けれど、そういうことは評価できていない感じ
・湾だの川だのとはおっしゃいますが(げふ)区別されないじゃないですか:…V6は使ってくれてないじゃないですか!(V6より先に見るべき変量があってじゅうぶんに分割しきったからV6の出番はなかった、の意)

 うーん。V6に特に着目して、つまり「川らしい」かどうかを気にして選択しようというのは、ほかのすべてのこととは直交してるとかいうことじゃないんですか。本当でしょうか。(棒読み)いえいえいえ、「川らしい」つまりV6によって特徴づけられるサンプルが少ないからそうなるんですよ。もっと本当でしょうか。(もっと棒読み)


 「評価編」([3884])に続きます。


この記事のURL https://neorail.jp/forum/3883/


この記事を参照している記事


[3882]

【A9・Exp.】ニューゲームを自動分類するには(仕込編)

2020/1/11

[3884]

【A9・Exp.】ニューゲームを自動分類するには(評価編)

2020/1/11

[3886]

「点・望・山(M243-11Y)」への招待

2020/1/18

[3956]

【ケテスタ】「スーパーさがみ」で「メトロエム」を読み解けない(仮)【ABC電鉄の使い方あり】

2020/2/29

[4046]

長島 / 新橋立 / 早崎鉱山

2020/5/7

[4069]

「〜この渡良瀬川にYシャツを〜」(仮)

2020/5/7

[4071]

「ふりかけセットの大びん」をぺんてる「マルチ8」で読み解く

2020/5/21

[4078]

「照焼大橋」不滅なれ(ばりばり編)

2020/5/21

[4237]

Re:[4236] 全自動CBDソフトクリーム(茶)

2020/10/1

[4241]

つけたし『3面指し』(1)

2020/10/1

[4304]

【A9V6】「山の体積」活用法【そしてA10へ】

2020/11/15

[4404]

きょうは佐倉ICで麻倉GC。

2021/1/16

[4594]

【A9V2】「水面に揺れる工場の灯」の地形が気に入らないときは

2021/6/1

[4678]

【高圧】ガストの上は和光市の君に(談)【JPCZ】

2021/12/1

[4683]

【コピペ決定の宿】青い砂は呼んでいるか【ビビット】

2022/1/1

[4691]

【近鉄見習い】10枚切りココロンカードですし【ベスプラ】

2022/1/1

[4790]

京王堀之内「パンの詰め放題」を京急堀ノ内「大津陣屋の川越藩士」で読み解く(仮)【妄想の花畑あり】

2022/6/1

[4983]

ベクトル海百山百のうたげ(宴)

2023/2/1

[5113]

「ラモー」と「ピアソラ」で味わいなおす「DQ3」

2023/11/1

[5246]

きょうは在野のタイヤで夢舞台。

2024/8/1


関連する記事


[4969]

研究ホワイトボックス(49) とにかく「主成分分析つき回帰木」するには tht - 2023/1/1


[4458]

研究ホワイトボックス(44) ハイパー・ゼロ:「散布図行列」「相関係数行列」とは tht - 2021/3/1


[4014]

きょうは川端康成で粗灰分。 tht - 2020/4/1


[4221]

【スーパードライ】啓林館「理数探究」(2020年4月)しゃきしゃき【お酒ではありません】 tht - 2020/10/1


[4347]

「テレビ視聴時間の規定要因を探る」(2016年7月)を読み解く(前編) tht - 2020/12/1


[4626]

ふれねる「自由研究 数学」の写(SHA) tht - 2021/8/25


[4637]

ふれねる「自由研究 数学」の定(TEI) tht - 2021/8/25


[5244]

【あのシステム】「ぼくのかんがえたさいきょうの京葉線ダイヤ」とは何か(談)【大みか】 tht - 2024/7/7






neorail.jp/は、個人が運営する非営利のウェブサイトです。広告ではありません。 All Rights Reserved. ©1999-2024, tht.